References

  • Heinzen et al. (2021)
  • R Core Team (2022)
  • Robinson, Hayes, and Couch (2023)
  • Fox, Weisberg, and Price (2023)
  • Fox, Weisberg, and Price (2022)
  • Maindonald and Braun (2022)
  • Dowle and Srinivasan (2023)
  • Wickham et al. (2023)
  • Croissant and Graves (2022)
  • Kim, Ismay, and Chunn (2021)
  • Hyndman et al. (2023)
  • Hyndman (2023)
  • Bryan (2023)
  • Pena and Slate (2019)
  • Xie (2023)
  • Kim and Ismay (2022)
  • Çetinkaya-Rundel et al. (2022)
  • Croissant, Millo, and Tappe (2023)
  • Cannon et al. (2019)
  • Wickham (2023)
Bryan, Jennifer. 2023. Gapminder: Data from Gapminder. https://CRAN.R-project.org/package=gapminder.
Cannon, Ann, George Cobb, Bradley Hartlaub, Julie Legler, Robin Lock, Thomas Moore, Allan Rossman, and Jeffrey Witmer. 2019. Stat2Data: Datasets for Stat2. https://github.com/statmanrobin/Stat2Data.
Çetinkaya-Rundel, Mine, David Diez, Andrew Bray, Albert Y. Kim, Ben Baumer, Chester Ismay, Nick Paterno, and Christopher Barr. 2022. Openintro: Data Sets and Supplemental Functions from OpenIntro Textbooks and Labs. https://CRAN.R-project.org/package=openintro.
Croissant, Yves, and Spencer Graves. 2022. Ecdat: Data Sets for Econometrics. https://www.r-project.org.
Croissant, Yves, Giovanni Millo, and Kevin Tappe. 2023. Plm: Linear Models for Panel Data. https://CRAN.R-project.org/package=plm.
Dowle, Matt, and Arun Srinivasan. 2023. Data.table: Extension of ‘Data.frame‘. https://CRAN.R-project.org/package=data.table.
Fox, John, Sanford Weisberg, and Brad Price. 2022. carData: Companion to Applied Regression Data Sets. https://CRAN.R-project.org/package=carData.
———. 2023. Car: Companion to Applied Regression. https://CRAN.R-project.org/package=car.
Heinzen, Ethan, Jason Sinnwell, Elizabeth Atkinson, Tina Gunderson, and Gregory Dougherty. 2021. Arsenal: An Arsenal of r Functions for Large-Scale Statistical Summaries. https://CRAN.R-project.org/package=arsenal.
Hyndman, Rob. 2023. Fpp2: Data for "Forecasting: Principles and Practice" (2nd Edition). https://CRAN.R-project.org/package=fpp2.
Hyndman, Rob, George Athanasopoulos, Christoph Bergmeir, Gabriel Caceres, Leanne Chhay, Kirill Kuroptev, Mitchell O’Hara-Wild, et al. 2023. Forecast: Forecasting Functions for Time Series and Linear Models. https://CRAN.R-project.org/package=forecast.
Kim, Albert Y., and Chester Ismay. 2022. Moderndive: Tidyverse-Friendly Introductory Linear Regression. https://CRAN.R-project.org/package=moderndive.
Kim, Albert Y., Chester Ismay, and Jennifer Chunn. 2021. Fivethirtyeight: Data and Code Behind the Stories and Interactives at FiveThirtyEight. https://github.com/rudeboybert/fivethirtyeight.
Maindonald, John H, and W. John Braun. 2022. DAAG: Data Analysis and Graphics Data and Functions. https://gitlab.com/daagur.
Pena, Edsel A., and Elizabeth H. Slate. 2019. Gvlma: Global Validation of Linear Models Assumptions. https://CRAN.R-project.org/package=gvlma.
R Core Team. 2022. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
Robinson, David, Alex Hayes, and Simon Couch. 2023. Broom: Convert Statistical Objects into Tidy Tibbles. https://CRAN.R-project.org/package=broom.
Wickham, Hadley. 2023. Tidyverse: Easily Install and Load the Tidyverse. https://CRAN.R-project.org/package=tidyverse.
Wickham, Hadley, Romain François, Lionel Henry, Kirill Müller, and Davis Vaughan. 2023. Dplyr: A Grammar of Data Manipulation. https://CRAN.R-project.org/package=dplyr.
Xie, Yihui. 2023. Knitr: A General-Purpose Package for Dynamic Report Generation in r. https://yihui.org/knitr/.

References

Bryan, Jennifer. 2023. Gapminder: Data from Gapminder. https://CRAN.R-project.org/package=gapminder.
Cannon, Ann, George Cobb, Bradley Hartlaub, Julie Legler, Robin Lock, Thomas Moore, Allan Rossman, and Jeffrey Witmer. 2019. Stat2Data: Datasets for Stat2. https://github.com/statmanrobin/Stat2Data.
Çetinkaya-Rundel, Mine, David Diez, Andrew Bray, Albert Y. Kim, Ben Baumer, Chester Ismay, Nick Paterno, and Christopher Barr. 2022. Openintro: Data Sets and Supplemental Functions from OpenIntro Textbooks and Labs. https://CRAN.R-project.org/package=openintro.
Croissant, Yves, and Spencer Graves. 2022. Ecdat: Data Sets for Econometrics. https://www.r-project.org.
Croissant, Yves, Giovanni Millo, and Kevin Tappe. 2023. Plm: Linear Models for Panel Data. https://CRAN.R-project.org/package=plm.
Dowle, Matt, and Arun Srinivasan. 2023. Data.table: Extension of ‘Data.frame‘. https://CRAN.R-project.org/package=data.table.
Fox, John, Sanford Weisberg, and Brad Price. 2022. carData: Companion to Applied Regression Data Sets. https://CRAN.R-project.org/package=carData.
———. 2023. Car: Companion to Applied Regression. https://CRAN.R-project.org/package=car.
Heinzen, Ethan, Jason Sinnwell, Elizabeth Atkinson, Tina Gunderson, and Gregory Dougherty. 2021. Arsenal: An Arsenal of r Functions for Large-Scale Statistical Summaries. https://CRAN.R-project.org/package=arsenal.
Hyndman, Rob. 2023. Fpp2: Data for "Forecasting: Principles and Practice" (2nd Edition). https://CRAN.R-project.org/package=fpp2.
Hyndman, Rob, George Athanasopoulos, Christoph Bergmeir, Gabriel Caceres, Leanne Chhay, Kirill Kuroptev, Mitchell O’Hara-Wild, et al. 2023. Forecast: Forecasting Functions for Time Series and Linear Models. https://CRAN.R-project.org/package=forecast.
Kim, Albert Y., and Chester Ismay. 2022. Moderndive: Tidyverse-Friendly Introductory Linear Regression. https://CRAN.R-project.org/package=moderndive.
Kim, Albert Y., Chester Ismay, and Jennifer Chunn. 2021. Fivethirtyeight: Data and Code Behind the Stories and Interactives at FiveThirtyEight. https://github.com/rudeboybert/fivethirtyeight.
Maindonald, John H, and W. John Braun. 2022. DAAG: Data Analysis and Graphics Data and Functions. https://gitlab.com/daagur.
Pena, Edsel A., and Elizabeth H. Slate. 2019. Gvlma: Global Validation of Linear Models Assumptions. https://CRAN.R-project.org/package=gvlma.
R Core Team. 2022. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
Robinson, David, Alex Hayes, and Simon Couch. 2023. Broom: Convert Statistical Objects into Tidy Tibbles. https://CRAN.R-project.org/package=broom.
Wickham, Hadley. 2023. Tidyverse: Easily Install and Load the Tidyverse. https://CRAN.R-project.org/package=tidyverse.
Wickham, Hadley, Romain François, Lionel Henry, Kirill Müller, and Davis Vaughan. 2023. Dplyr: A Grammar of Data Manipulation. https://CRAN.R-project.org/package=dplyr.
Xie, Yihui. 2023. Knitr: A General-Purpose Package for Dynamic Report Generation in r. https://yihui.org/knitr/.